Projekte

Viele Proteine müssen laufen, um Fett zu aktivieren

Wie werden Fette im Körper abgebaut? Grazer Forscher/innen beschäftigen sich mit wichtigen Fragen zum Fettstoffwechsel. Quelle: Shutterstock

Jeder Marathonläufer erreicht diesen Punkt: Nach dem schnellen Energielieferanten Glukose (aus Kohlenhydraten) fängt der Körper mit der Fettverbrennung an, um Energie zur Verfügung zu stellen. Wer sich ausdauernd und bei niedrigem Puls bewegt, setzt nach etwa 30 Minuten die Lipolyse in Gang. Das Gleiche passiert, wenn wir Hunger haben: Die Fettzellen bekommen ein hormonelles Signal, das Depot verfügbar zu machen und eingelagerte Fett-Tröpfchen in Fettsäuren aufzuspalten. Selbst wenn wir im moderaten Laufschritt unterwegs sind, laufen diese Prozesse im Körper blitzschnell ab. „Die Aktivierungs- und Steuerungsprozesse springen innerhalb von Sekunden an. Das geht nur, weil die Proteine für die Fettaufspaltung in der Zelle nicht erst gebaut, sondern nur entsperrt werden müssen.“ In ihrem vom Wissenschaftsfonds FWF geförderten Projekt „Hormonale Regulation der Lipolyse” hat die Biochemikerin Ruth Birner-Grünberger drei Fragen analysiert: welche Proteine bei der Fettverbrennung beteiligt sind, wo sie räumlich an den Fett-Tröpfchen in den Fettzellen interagieren und wie sie zu- oder ausgeschaltet werden.

Phosphat als Schalter

Birner-Grünberger beschäftigt sich seit ihrer Postdoc-Zeit 2002 mit der Lipolyse und entwickelt in ihrer Arbeitsgruppe am Institut für Pathologie der Medizinischen Universität Graz Technologien für Proteomik: „Dabei versuchen wir, für bestimmte Stoffwechselprozesse Proteine aufgrund ihrer Aktivität aufzuspüren“, so die Projektleiterin. Auf der Suche nach fettspaltenden Enzymen im Fettgewebe und in der Leber wurden in Vorstudien mehrere Beteiligte gefunden: „Es gibt mehrere Lipasen, also fettspaltende Proteine, zudem weitere Proteine, die den Prozess steuern.“ Besonders auffällig war die Fülle an Phosphorylierungen. Mit dieser chemischen Modifikation, bei der Phosphat an Proteine gebunden wird, können in den Zellen Proteine aktiviert oder ausgeschalten werden. Das ist zeit- und energiesparender, als jedes Mal die Proteinsynthese und den Proteinabbau anzuwerfen. Im Forschungsprojekt galt es zu beantworten, wann und wo chemische Modifikationen die Proteine im Fettstoffwechsel entriegeln oder lahmlegen.

Im basalen Zustand (links vor dem hormonellen Signal zur Lipolyse) sind das Aktivatorprotein CGl58 und das Regulatorprotein Perilipin aneinander gebunden. Wird die Fettspaltung aktiviert (rechts) wird eines der beiden Proteine mit Phosphat markiert (Phosphorylierung) und CGI58 löst sich von Peripilin, um die erste von drei Lipasen (fettspaltende Enzyme) namens ATGL zu aktivieren. Quelle: Ruth Birner-Grünberger, Meduni Graz

Um dem Zusammenspiel der fettspaltenden Proteine auf die Schliche zu kommen, reichten In-vitro-Studien allerdings nicht aus: „Das biologische System ist komplex, stark reguliert  und ortsgebunden. Wir bekommen kein vollständiges Bild, wenn wir in einem Reagenzglas Fett-Tröpfchen, Lipase und Aktivator mischen“, erklärt die Forscherin. Erst die Beobachtung tierischer Zellen mittels konfokalem Laserscan-Mikroskop führte zum gemeinsamen Erfolg, denn „Forschung bedeutet heute Kooperation“, betont die Biochemikerin, die mit der Strukturbiologin Monika Oberer (Universität Graz) und mit der Zellbiologin Dawn Brasaemle (Rutgers University, New Jersey, USA) zusammen arbeitete, um die Proteine für die Versuchsreihen in entsprechender Menge und Qualität zu bekommen.

Räumlich und zeitlich getaktete Aktivierung

So konnten die ersten Schritte der räumlichen und chemischen Interaktion an den Fett-Tröpfchen in Gewebszellen enthüllt werden: Um die erste (von drei) Lipasen zu aktivieren, braucht es in der Befehlskette den Aktivator CGl58 und den Regulator Perilipin. Die beiden Proteine sitzen im basalen Zustand der Fettzellen aneinander gebunden auf dem Lipid-Tropfen. Durch die Markierung mit Phosphat trennen sie sich, CGl58 wandert an eine andere Stelle des Tropfens, um die erste Lipase (ATGL) zu aktivieren. Der Regulator Perilipin verhindert, dass die Lipasen aktiviert werden, wenn es nicht nötig ist. Das ist interessant, weil verbreitete Krankheiten wie Diabetes und Arteriosklerose durch die Überlastung des Fettstoffwechsels begünstigt werden. Wenn lange Zeit mehr Energie zugeführt wird, als der Körper verbrennen kann, wird ein sorgfältig getaktetes und räumlich austariertes System gestört.

In einem geplanten Folgeprojekt will die Leiterin der Forschungsgruppe „Functional Proteomics and Metabolic Pathways“ sich mittels Phosphoproteomik (das ist die globale Analyse von Tausenden Proteinphosphorylierungen in Zellen) ansehen, welche energetischen Prozesse gleichzeitig mit der Lipolyse reguliert werden, wie zum Beispiel  Glykogenabbau, und deren zeitlichen Ablauf beobachten: „Es sieht so aus, als würden sich Fett-Zellen binnen Minuten optimal darauf einstellen, dass Fettsäuren benötigt werden und wie sie weiter verarbeitet werden. Wir brauchen sie ja nicht nur für die Bereitstellung von Energie, wie etwa bei Bewegung oder Hunger, sondern auch für den Aufbau von Zellmembranen und Signalmolekülen.“ Um diese Analysen durchführen zu können, wurde im Projekt auch eine Methode zur verbesserten Auswertung von Proteomik-Daten entwickelt.


Zur Person

Die Biochemikerin Ruth Birner-Grünberger ist seit 2014 Leiterin der Forschungsgruppe „Functional Proteomics and Metabolic Pathways“ an der Medizinischen Universität Graz und seit 2013 Koordinatorin des Omics Center Graz. Sie promovierte in Technischer Chemie an der Technischen Universität Graz. Birner-Grünberger war Projektleiterin in den BMWF/GEN-AU Verbundprojekten GOLD II & III und leitet derzeit ein Projekt im FWF-Doktoratskolleg Metabolische und Kardiovaskulare Krankheiten zum Fettstoffwechsel. Sie war Gastprofessorin an der University of California in Berkeley (USA) sowie an der ETH Zürich.


Publikationen

Sahu-Osen A, Montero-Moran G (cofirst author), Schittmayer M, Fritz K, Dinh A, Chang YF, McMahon D, Boeszoermenyi A, Cornaciu I, Russell D, Oberer M, Carman GM, Birner-Gruenberger R (cocorresponding author), Brasaemle DL: CGI- 58/ABHD5 is phosphorylated on Ser239 by protein kinase A: control of subcellular localization. Journal of Lipid Research 2015, 56(1):109-21. DOI: 10.1194/jlr.M055004
Schittmayer M, Fritz K (cofirst author), Liesinger L, Griss J, Birner-Gruenberger R.: Cleaning out the Litterbox of Proteomic Scientists‘ Favorite Pet: Optimized Data Analysis Avoiding Trypsin Artifacts. Journal of Proteome Research 2016, 15(4):1222-9. DOI:10.1021/acs.jproteome.5b01105

Kommentare (0)

Aktuell sind keine Kommentare für diesen Artikel vorhanden.

Einen Kommentar schreiben

Deine E-Mail-Adresse wird nicht veröffentlicht. Erforderliche Felder sind mit * markiert.